ARM Microcontroller Course

May 6, 2015

Table of Contents

- 1 Introduction
- 2 (
 - Data types
 - Operators
 - Events
- 3 Microcontroller

■ 4 Evenings

- 4 Evenings
- Nucleo-F411RE board

- 4 Evenings
- Nucleo-F411RE board
- Programming in C

- 4 Evenings
- Nucleo-F411RE board
- Programming in C
- Manual and Datasheet

- 4 Evenings
- Nucleo-F411RE board
- Programming in C
- Manual and Datasheet
- Build a Function Generator

Processor

- Processor
- Memory

- Processor
- Memory
 - Program Memory

- Processor
- Memory
 - Program Memory
 - RAM

- Processor
- Memory
 - Program Memory
 - RAM
- Peripherals

- Processor
- Memory
 - Program Memory
 - RAM
- Peripherals
 - Clock Generator

- Processor
- Memory
 - Program Memory
 - RAM
- Peripherals
 - Clock Generator
 - Digital General Purpose I/O

- Processor
- Memory
 - Program Memory
 - RAM
- Peripherals
 - Clock Generator
 - Digital General Purpose I/O
 - Analog I/O (eg. ADC, Comparator)

- Processor
- Memory
 - Program Memory
 - RAM
- Peripherals
 - Clock Generator
 - Digital General Purpose I/O
 - Analog I/O (eg. ADC, Comparator)
 - Timers

- Processor
- Memory
 - Program Memory
 - RAM
- Peripherals
 - Clock Generator
 - Digital General Purpose I/O
 - Analog I/O (eg. ADC, Comparator)
 - Timers
 - Hardware Serial Communication (eg. UART, SPI, I²C)

Table of Contents

- 1 Introduction
- 2 C
 - Data types
 - Operators
 - Events
- 3 Microcontroller

■ Integer types (uint8_t,uint16_t,int32_t,..)

- Integer types (uint8_t,uint16_t,int32_t,..)
- Float types (float,double,..)

- Integer types (uint8_t,uint16_t,int32_t,..)
- Float types (float,double,..)
- Enumerated types (enum)

- Integer types (uint8_t,uint16_t,int32_t,..)
- Float types (float,double,..)
- Enumerated types (enum)
- Void (void)

- Integer types (uint8_t,uint16_t,int32_t,..)
- Float types (float,double,..)
- Enumerated types (enum)
- Void (void)
- Derived types (pointers, arrays, structs, unions, function types,..)

Arithmetic

- + Adds two operands
- Subtracts second operand from first
- * Multiplies both operands
- / Divides numerator by de-numerator
- ++ Increases integer by 1
- Decreases integer by 1

Logical

- && Logical AND. Returns True when both operands are non-zero
 - || Logical OR. Returns True when any of the operands is non-zero
 - ! Logical NOT. Reverses the logical state of the operand.

Bitwise

- & Bitwise AND. Copies bit when it exists in both operands.
 - Bitwise OR. Copies bit when it exists in either operand.
- Bitwise XOR. Copies the bit if set in one operand, but not both.
- ~ Flips the bits.
- Sinary Left Shift. Left operands value is moved left by right number of bits.
- >> Binary Right Shift. Left operands value is moved right by right number of bits.

Example

Polling and Interrupts

Two approaches to checking a state

Polling

- Check a value
- If changed, perform some action

Polling and Interrupts

Two approaches to checking a state

Polling

- Check a value
- If changed, perform some action

Interrupt

- When a change of a value happens, go immediately to ISR
- Perform Interrupt Service Routine (ISR)
- Resume code

Table of Contents

- 1 Introduction
- 2 (
 - Data types
 - Operators
 - Events
- 3 Microcontroller

■ Register

- Register
- Memory Space

- Register
- Memory Space
- Memory Mapped Peripherals

- Register
- Memory Space
- Memory Mapped Peripherals

Register	Name	Description
0×0800 0000		Flash Memory Start Address
0×2000 0000		SRAM Start Address
0×4002 0400	GPIOB_MODER	GPIO Port B Mode register
0×4002 000C	GPIOA_PUPDR	GPIO Port A Pullup register
0×4001 300C	SPI1_DR	SPI Data register

The procedure:

Read the manual

- Read the manual
- 2 Start a project in Eclipse

- Read the manual
- 2 Start a project in Eclipse
- 3 Write your code

- Read the manual
- 2 Start a project in Eclipse
- Write your code
- 4 Compile the code

- Read the manual
- Start a project in Eclipse
- Write your code
- Compile the code
- 5 Flash to Nucleo board with STLink

Today:

■ Read the manual¹

Today:

- Read the manual
- Get used to Eclipse

Today:

- Read the manual
- Get used to Eclipse
- Turn a LED on/off

Today:

- Read the manual
- Get used to Eclipse
- Turn a LED on/off

Today:

- Read the manual
- Get used to Eclipse
- Turn a LED on/off

What's yet to come:

- Timers
- Analog Peripherals
- SPI
- Build a Function Generator using DDS

Material

You can find all material on http://www.scintilla.utwente.nl/docs/cursus Make sure you download:

- The Manual
- The Usermanual of the Nucleo-F411RE
- The Reference Manual of the STM32F411RE